ارزیابی موردی قابلیت اعتماد لرزه‌ای ساختمان‌های بتنی قالب‌تونلی با احتساب تأثیر پدیده‌ی اندرکنش خاک و سازه

نوع مقاله : Articles

نویسندگان

1 دانشکده مهندسی عمران، دانشگاه علم و فرهنگ

2 دانشکده مهندسی عمران، دانشگاه صنعتی خواجه‌نصیرالدین طوسی

چکیده

تجربیات حاصل از زلزله‌های گذشته، حاکی از تأثیر قابل­ملاحظه‌ی پدیده‌ی اندرکنش خاک و ‌سازهبر پاسخ‌های دینامیکی سازه‌های مرتفع، حجیم، وزین و سخت مستقر روی خاک‌های نسبتاً نرم است. کنترل تأثیر پدیده‌ی مذکور بر قابلیت اعتماد لرزه‌ایساختمان‌ها با سیستم نوین قالب‌تونلی، نظر به وزن زیاد و سختی قابل‌توجه سیستم، ضروری به نظر می‌رسد. در این مطالعه، خاک زیر ساختمان‌های قالب‌تونلی 5 و 10 طبقه به کمک فنرهایی به‌صورت خطی مدل شده و پس از تحلیل، ضمن کنترل پاسخ‌ها، با رویکردی احتمالاتی، سطح عملکرد ساختمان‌ها و ضرایب اطمینان در برابر لغزش و واژگونی حین زلزله در دو حالت بستر صلب و انعطاف‌پذیر‌ مورد ارزیابی و مقایسه قرار گرفته است. نتایج نشان می‌دهد، با افزایش ارتفاع ساختمان و شدت زلزله، پدیده‌ی اندرکنش خاک‌و‌سازه بر پاسخ‌های سازه شامل برش و جابه­جایی طبقات و نیز موقعیت شروع خرابی‌ها مؤثر بوده و نسبت به بستر صلب، می‌تواند احتمال رسیدن المان‌ها به اولین سطوح خرابی را تا 30 درصد و احتمال لغزش و واژگونی کلی ساختمان را حداقل 10 درصد افزایش دهد. به نظر می‌رسد که به­خصوص در مناطق با لرزه‌خیزی بالا و خاک‌های نرم، پدیده‌ی نامبرده می‌تواند سبب کاهش بازه‌ی قابلیت اعتماد سازه‌های بلند در حصول به عملکردهای از پیش تعیین شده گردد.

کلیدواژه‌ها


  1. Getmiri, B., Tajoddini, H.R. (2003) The effects of nonlinear behavior of soil on dynamic responses of tall buildings. Journal of the College of Engineering, 37(2), 283-294 (in Persian).
  2. Hosseinzadeh, N., Nateghi-Alahi, F., and Behnamfar, F. (2004) Shake table study of soil-structure interaction effects on seismic response of adjacent buildings. Journal of Computational Methods in Engineering (Esteghlal), 22(2), 1-21 (in Persian).
  3. Hosseinzadeh, N., Davoodi, M., and Rayat Roknabadi, E. (2009) Comparison of soil-structure interaction effects between building code requirements and shake table study. Journal of Seismology and Earthquake Engineering, 11(1), 31-39.
  4. Hosseinzadeh, N., Davoodi, M., and Rayat Roknabadi, E. (2012) Shake table study of soil structure interaction effects in surface and embedded foundation. The 15th World Conference on Earthquake Engineering, 24-28 September, Lisbon, Portugal.
  5. Ghannad, M.A. and Ahmadnia A. (2006) The effect of soil-structure interaction on inelastic structural demands. European Earthquake Engineering, 20(1), 23-35.
  6. Ghannad, M.A. and Jahankhah H. (2007) Site dependent strength reduction factors for soil-structure systems. Soil Dynamics and Earthquake Engineering, 27(2), 99-110.
  7. Aviles, J. and Perez-Rocha, L.E. (2003) Soil-structure interaction in yielding systems. Earthquake Engineering and Structural Dynamics, 32(11), 1749-1771.
  8. Nakhaei, M. and Ghannad, M.A. (2008) The effect of soil-structure interaction on damage index of buildings. Earthquake Engineering, 30(6), 1491-1499.
  9. Goel, R.K. and Chopra, A.K. (1998) Period formulas for concrete shear wall buildings. Journal of Structural Engineering, 124(4), 426-433.
  10. Lee, L.H., Chang, K.K., and Chun, Y.S. (2000) Experimental formula for the fundamental period of RC building with shear wall dominant systems. The Structural Design of Tall Buildings, 9(4), 295-307.
  11. Balkaya, C. and Kalkan E. (2003) Estimation of fundamental periods of shear-wall dominant building structures. Earthquake Engineering & Structural Dynamics, 32(7), 985-998.
  12. Balkaya, C. and Kalkan, E. (2004) Relevance of R-factor and fundamental period for seismic design of tunnel-form building. 13th World Conference on Earthquake Engineering, Vancouver, Canada.
  13. Balkaya, C. and Kalkan, E. (2004) Seismic vulnerability, behavior and design of tunnel form building structures. Engineering Structures, 26(14), 2081-2099.
  14. Balkaya, C. and Kalkan, E. (2003) Seismic design parameters for shear-wall dominant building structures. The 14th National Congress on Earthquake Engineering, Guanajuato, Mexico.
  15. Yuksel, S.B. and Kalkan, E. (2007) Behavior of tunnel form buildings under quasi-static cyclic lateral loading. Structural Engineering and Mechanics, 27(1), 99-115.
  16. Kalkan, E. and Yuksel, S.B. (2007) Pros and cons of multistory RC tunnel-form (box-type) buildings. The Structural Design of Tall and Special Buildings, 17(3), 601-617.
  17. Tavafoghi, A. and Eshghi, S. (2008) Seismic behavior of tunnel form concrete building structures. The 14th World Conference on Earthquake Engineering, Beijing, China.
  18. Eshghi, S. and Tavafoghi, A. (2012) Experimental study of tunnel form buildings. Amir Kabir Journal of Science and Technology, 44(1), 31-42 (in Persian).
  19. Tavafoghi, A. and Eshghi, S. (2011) Evaluation of behavior factor of tunnel-form concrete building structures using applied technology council 63. The Structural Design of Tall and Special Buildings, 22(8), 615-634.
  20. Balkaya, C., Yuksel, S.B., and Derinoz, O. (2012) Soil-structure interaction effects on the fundamental periods of the shear-wall dominant buildings. The Structural Design of Tall and Special Buildings, 416-430, DOI: 10.1002/tal.611.
  21. Beheshti-Aval, S.B. and Mohsenian, V. (2017) Multi-level R-factor determination for RC tunnel-form buildings. Sharif Journal of Civil Engineering (Accepted, in Persian).
  22. Mohsenian, V., Beheshti-Aval, S.B., and Darbanian, R. (2017) Endurance time method, a suitable substitute for traditional dynamic analysis in seismic performance assessment of RC tunnel form buildings. Sharif Journal of Civil Engineering (Accepted, in Persian).
  23. Beheshti-Aval, S.B, Mohsenian, V., and Nikpour, N. (2015) Seismic characteristics of tunnel form concrete buildings with irregular plan. Journal of Solid and Fluid Mechanics, 5(3), 1-15.
  24. Beheshti-Aval, S.B., Mohsenian, V., and Nikpour, N. (2017) A study on seismic performance of RC tunnel form building structures with the irregular plan. Modares Civil Engineering Journal (Accepted, in Persian).
  25. Mohsenian, V., Rostamkalaee, S., Moghadam, A.S., and Beheshti-Aval, S.B. (2017) Evaluation of seismic sensitivity of tunnel form concrete buildings to mass eccentricity in plan. Sharif Journal of Civil Engineering (Accepted, in Persian).
  26. Mohsenian, V. (2013) R-Factor Determination for Tunnel-Form Buildings. M.Sc. Thesis University of Science and Culture, Iran, Tehran (in Persian).
  27. Permanent Committee for Revising the Standard 2800 (2014) Iranian Code of Practice for Seismic Resistant Design of Buildings, 4th Edition. Building and Housing Research Center, Tehran, Iran.
  28. ACI Committee 318 (2007) Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary. American Concrete Institute.
  29. Computers and Structures Inc. (CSI) (2008) Structural and Earthquake Engineering Software, ETABS, Extended Three Dimensional Analysis of Building Systems Nonlinear. Version 9.5.0. Berkeley, CA, USA.
  30. Approved Technologies in Direction of Sub-Note 2-6, Paragraph "D", Note 6 (2007) A Step in Direction of Building Industrialization, First Edition. Building and Housing Research Center Press, Pages 21-22, (in Persian).
  31. Paulay, T. and Binney, J.R. (1974) Diagonally reinforced coupling beams of shear walls, shear in reinforced concrete. ACI Special Publications 42, 579-598.
  32. Computers and Structures Inc. (CSI) (2007) Structural and Earthquake Engineering Software, PERFORM-3D Nonlinear Analysis and Performance Assessment for 3-D Structures. Version 4.0.3, Berkeley, CA, USA.
  33. Computers and Structures Inc. (CSI) (2006) PERFORM-3D Nonlinear Analysis and Performance Assessment for 3-D Structures, User Guide. Version 4, August, Berkeley, CA, USA.
  34. Technical Criteria Codification & Earthquake Risk Reduction Affairs Bureau (2007) Instruction for Seismic Rehabilitation of Existing Buildings. No. 360, Management and Planning Organization, Iran.
  35. ASCE (2007) Seismic Rehabilitation of Existing Buildings. ASCE/SEI41-06, American Society of Civil Engineers.
  36. PEER Ground Motion Database, Pacific Earthquake Engineering Research Center, Web Site: http://peer.berkeley.edu/peer_ground_motion_ database
  37. Berahman, F. and Behnamfar, F. (2007) Seismic fragility curves for un-anchored on-grade steel storage tanks: Bayesian approach. Journal of Earthquake Engineering, 11(2), 166-192.
  38. Beheshti-Aval, S.B., Masoumi-Verki, A., and Rastegaran, M. (2014) Systematical approach to evaluate collapse probability of steel mrf buildings based on engineering demand and intensity measure. International Journal of Structural Analysis and Design – IJS, 1(2), 14-18.