ارائه رابطه‌ای برای تخمین جابه‌جایی جانبی حاصل از روانگرایی با استفاده از بانک اطلاعاتی ژئوتکنیکی جدید

فرهنگ فرخی, علیرضا فیروزفر, محمدصادق مقصودی

چکیده


گسترش جانبی ناشی از روانگرایی یکی از عوامل اصلی به وجود آورنده خسارات عمده در طول زلزله به سازه‌های زمینی و سازه‌های مدفون در خاک می‌باشد. این نوع از جابه‌جایی‌های دائمی سطح زمین، که از چند سانتی‌متر تا 10 متر و بیشتر متغیر می‌باشد، خسارات اساسی را به تأسیسات زیر بنایی و شالوده‌های شمعی سازه‌های بزرگ و پایه‌های پل‌ها در طول دهه‌های اخیر تحمیل کرده است. به همین علت، یک مدل جدید با توانایی بالا به‌منظور برآورد جابه‌جایی‌های جانبی ناشی از روانگرایی با استفاده از روش شبکه‌های عصبی نوع GMDH1 در تحقیق حاضر توسعه داده شده است. به این منظور، یک بانک اطلاعاتی جامع شامل 526 الگو که در طول 18 زلزله مهم ثبت شده است، به‌منظور مدل‌سازی و تحلیل جمع‌آوری گردید. به دلیل اینکه مدل حاضر بر پایه تعداد زیادی از زلزله‌ها و نیز ساخت‌گاه‌های مختلف توسعه یافته است، مدل جامع‌تر و قابل‌اعتمادتری از مدل‌های قبلی ارائه می‌کند. همچنین مقایسه عملکرد مدل توسعه داده شده در تحقیق حاضر با نتایج آزمایشگاهی موجود در متن بیانگر صحت پیش‌بینی مقادیر توسط مدل جدید می‌باشد.

Developing a Model to Estimate the Liquefaction Induced Lateral Displacement Using a New Geotechnical Database

  Farhang Farrokhi1, Alireza Firoozfar2 and Mohammad Sadegh Maghsoudi3*

1. Assistant Professor, University of Zanjan, Zanjan, Iran

2. Assistant Professor, University of Zanjan, Zanjan, Iran

3. Ph.D. Candidate, University of Zanjan, Zanjan, Iran,

*Corresponding Author, e-mail: m.s.maghsudi@gmail.com

The pore water pressure increasement in saturated sands is a consequence of cyclic shear stresses induced by earthquake loads. Following this change, the shear strength of soil rapidly decreases and liquefaction of soil may be occurred. Most types of failure associated with the liquefaction phenomena are: sand boil, flow failure of slopes, ground oscillation, loss of bearing capacity, ground settlement, and lateral spreading.

Liquefaction-induced lateral spreading is one of the most important factors of major damage to Ground and underground structures during earthquakes. This type of permanent ground displacement, which has amplitudes ranging from a few centimeters to 10 meters and more, has caused substantial damages to lifelines and pile-foundations of buildings and bridge piers along the past earthquakes.

Although the mechanism of soil liquefaction is well recognized, the prediction of liquefaction-induced horizontal displacement is associated with the complexity and difficulty, due to the involvement of multiplex parameters. Several researches have been done to develop techniques for lateral ground displacement prediction. These techniques can be divided into four classes, including simplified analytical, numerical, empirical, and artificial neural network methods. Since the simplified analytical methods consider the shear strength of soil unchanged during an earthquake, these methods may not provide an accurate estimate of lateral displacements caused by liquefaction of soil. Besides, due to the complexities related to the accurate modeling and the difficulties in measuring the in-situ parameters of soil layers, it is obvious that the consideration of some simplifications in numerical methods is required, which may reduce their capabilities. Due to the limitations related to analytical and numerical methods, many researchers developed empirical models based on ground displacement records. Empirical methods detect the relationship between in-situ displacements and various effective parameters by regression method. It is believed that ANN models compared to the conventional regression methods can predict complex problems, such as liquefaction-induced lateral spreading more accurately.

In the present study, a new model with the ability to estimate the lateral displacement caused by liquefaction has been developed using the Group Method of Data Handling (GMDH) type neural networks. In this method, complicated relationships are developed according to their efficiency against a series of multi-input single-output data pairs. GMDH algorithms present a tool to find the appropriate relationship between data, recognize the optimal structure of the network, and improvement in accuracy of existing algorithms. In general, the GMDH type neural network includes certain advantages compared to other types of neural networks. In particular, it has the ability to find and select the most suitable input variables from a set of variables. By sorting different solutions, GMDH networks minimize the influence of the user on the structure and results of modeling. The computer automatically finds the optimal structure of the model and the laws acting on the system.

In this study, a comprehensive database containing 526 case histories and recorded over 18 major earthquakes was utilized to correlate the liquefaction-induced lateral spreading with the most effective parameters. Since the presented model has been developed based on numerous earthquakes and site conditions, it is more general and reliable than previous models. The obtained results indicate that the GMDH model has the ability to predict the 

lateral spreading with a high degree of accuracy. In order to validate the new proposed model, the displacements obtained by 28 centrifuge tests were compared with the results of the GA-GMDH model. The comparison showed a high degree of accuracy of the new GA-GMDH model, indicating a good predictive capability of the model, even at small ground displacements. Moreover, comparing the performance of the model developed in the present study with experimental results in literature shows the accuracy of predicted values by the new model. 

Keywords: Lateral Spreading, Liquefaction, GMDH Type Neural Network, Geotechnical Database.


موضوع


جابه‌جایی جانبی، روانگرایی، شبکه‌های عصبی نوع GMDH، بانک اطلاعاتی ژئوتکنیکی.

تمام متن:

PDF

مراجع


Committee on Earthquake Engineering Research (1985) Liquefaction of Soils During Earthquakes. National Research Council, National Academy Press, Washington, D.C., 240 pp.

Newmark, N.M. (1965) Effects of Earthquakes on Embankments and Dams. Géotechnique, 15(2), 139-160.

Makdisi, F.I. and Seed, H.B. (1978) Simplified procedure for estimating dam and embankment earthquake-induced deformations. J. Geotech. Eng. Div., 104(GT7), 849-867.

Towhata, I., Sasaki, Y., Tokida, K.I., Matsumoto, H., Tamari, Y., and Yamada, K. (1992) Prediction of Permanent Displacement of Liquefied Ground by means of Minimum Energy Principle. Soils and Foundations, JSSMFE, 32(3), 97-116.

Elgemal, A.W., Zeghal, M., Taboada, V., and Dobry, R. (1996) Analysis of site liquefaction and lateral spreading using centrifuge testing records. Soils and Foundations, 36(2), 111-121.

Taboada, V.M. and Dobry, R. (1998) Centrifuge modeling of earthquake-induced lateral spreading in sand. J. Geotech. Geoenviron. Eng., 124(12), 1195-1206.

Olson, S.M. and Johnson, C.I. (2002) Analyzing liquefaction-induced lateral spreads using strength ratios. J. Geotech. Geoenviron. Eng., 134(8), 1035–1049.

Sharp, K.M., Dobry, R., and Abdoun T. (2003) Centrifuge modeling of liquefaction and lateral spreading of virgin, over-consolidated and pre-shaken sand deposits. Int. J. Phys. Model. in Geotechnics, 2,11-20.

Gu, W.H., Morgenstern, N.R. and Robertson, P.K. (1993) Progressive Failure of Lower San Fernando Dam. J. Geotech. Eng., 119(2), 333-349.

Finn, W.D.L., Ledbetter, R.H., and Wu, G. (1994) Liquefaction in Silty Soils: Design and Analysis. Ground Failures under Seismic Conditions. Geotec. Spec. Pub., 44, 51-76.

Valsmais, A., Bouckovalas, G. and Papadimitriou, A. (2010) parametric investigation of lateral spreading of gently sloping liquefied ground. J. Soil Dyn. Earthq. Eng., 30, 490–508.

Youd, T.L. and Perkins, D.M. (1987) Mapping of liquefaction severity index. J. Geotech. Eng., 113(11), 1374–1391.

Bartlet, S.F. and Youd, T.L. (1995) Empirical prediction of liquefaction-induced lateral spread. J. Geotechnical Eng. Div., 121(4), 316–29.

Youd, T.L., Hansen, C.M. and Bartlett, S.F. (2002) Revised multilinear regression equations for prediction of lateral spread displacement. J. Geotech. Geoenviron. Eng., 128(12), 1007–1017.

Wang, J. and Rahman, M.S. (1999) A neural network model for liquefaction induced horizontal ground displacement. J. Soil Dyn. Earthq. Eng., 18, 555–68.

Javadi, A.A., Rezania, M., and MousaviNezhad, M. (2006) Evaluation of liquefaction induced lateral displacements using genetic programming. J. Comp. Geotech., 33, 222-233

Garcia, S.R., Romo, M.P. and Botero, E. (2008) A neuro fuzzy system to analyze liquefaction-induced lateral spread. Soil Dyn. Earth. Eng., 28, 169–180.

Ivakhnenko, A.G. (1971) Polynomial theory of complex systems. IEEE Trans. Sys. Mng. Cyber. SMC., 1, 364–378.

Onwubolu, G.C. (2009) Hybrid Self-Organizing Modeling Systems. Springer-Verlag, Heidelberg.

Nariman-Zadeh, N., Darvizeh, A., and Ahmad-Zadeh, G.R. (2003) Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and predicting of the explosive cutting process. Inst. Mech. Eng., 217(B), 779–790.

Seed, H.B., Arango, I., Chan, C.K., Gomez-Masso, A. and Ascoli, R.G. (1979) Earthquake-Induced Liquefaction Near Lake Amatitlan, Guatemala. Report No. UCB/EERC-79/27.

Rojahn, C., Brogan, G.E., and Siemmons, D.B. (1977) Preliminary Report on the San Juan, Argentina Earthquake of November 23, 1977. U.S. Geological Survey, Menlo Park, CA, USA.

Tokimatsu, K., Kojima, H., Kuwayama, S., Abe, A., and Midorikawa, S. (1994) Liquefaction-Induced Damage to Buildings in 1990 Luzon Earthquake. J. Geotech. Eng., 120(2), 290-307.

Holzer, T., Bennett, M.J., Ponti, D.J. and Tinsley, J.C. (1999) Liquefaction and Soil Failure during the 1994 Northridge Earthquake. J. Geotech. Geoenviron. Eng., 125(6), 438-452.

Cetin, K.O., Youd, T.L., Seed, R.B., Bray, J.D., Sancio, R., Lettis, W., Tolga, M.T., and Durgunoglu, H.T. (2002) Liquefaction-Induced Ground Deformations at Hotel Sapanca during Kocaeli (Izmit)-Turkey Earthquake. Int. J. Soil Dyn. Earth. Eng., 22, 1083- 1092.

Juang, C.H. and Jiang, T. (2000) Assessing Probabilistic Methods for Liquefaction Potential Evaluation. Geotechnical Special Publication No. 107, Soil Dyn. Liquefaction 2000, R.Y.S. Pak and J. Yamamura, eds., ASCE, Reston, VA. 148-162.

Holzer, T., Noce, T.E., Bennett, M.J., Alessandro, C., Boatwrite, J., Tinsley, J.C., Sell, R.W. and Rosenberg, L.I. (2004) Liquefaction-Induced Lateral Spreading in Oceano, California, During the 2003 San Simeon Earthquake. USGS Open-File Report No. 2004–1269, Version 1.0.

Sasajima, T., Kabouchi, A., Kohama, E., Watanabe, J., Miura, K., and Otsuka, N., (2005) Liquefaction induced deformation of test quay wall in Kushiro Port during the 2003 Tokachi-oki earthquake. Earthq. Eng. Soil Dyn., 133, 1-15.

Sharp, K.M., Dobry, R., and Abdoun, T. (2003) Liquefaction centrifuge modeling of sands of different permeability. J. Geotech. Geoenviron. Eng., 129(12), 1083-1091.

Abdoun, T.H. (1997) Modeling of seismically induced lateral spreading of multi-layered soil and its effect on pile foundations. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York.

Jonyer, W.J. and Boore, D.M. (1991) Strong earthquake ground motion and engineering design. Geotech. News., 9(1), 21-26.


ارجاعات

  • در حال حاضر ارجاعی نیست.


تماس با ما حامیان مجله تمامی حقوق این سایت متعلق به فصلنامه علوم و مهندسی زلزله است