استفاده از الگوریتم بهینه‌سازی ازدحام ذرات در شناسایی و استخراج پالس غالب رکورد سرعت حرکات نزدیک گسل

سید روح الله حسینی واعظ, زهرا مینائی

چکیده


در این مطالعه با به‌کارگیری الگوریتم بهینه‌سازی ازدحام ذرات به شناسایی و استخراج پالس سرعت رکوردهای نزدیک گسل با استفاده از مدل‌های شبیه‌سازی پرداخته شده است. تابع هدف در فرآیند بهینه‌سازی، به‌صورت یک تابع مقید است، که در آن جذر میانگین مربعات اختلاف میان مقادیر طیف پاسخ الاستیک شبه سرعت حاصل از مدل شبیه‌سازی پالس و رکورد واقعی به‌عنوان تابع هدف و جذر میانگین اختلاف مقادیر تاریخچه زمانی سرعت متناظر به‌عنوان قید می‌باشد. الگوریتم بهینه‌سازی با تابع هدف تعریف شده، انطباق هم‌زمان تاریخچه زمانی سرعت و طیف پاسخ الاستیک شبه‌سرعت حاصل از مدل پیشنهادی و رکورد واقعی را ممکن می‌سازد. از این طریق، پارامترهای فیزیکی مدل‌های شبیه‌سازی بدون نیاز به فرآیند سعی‌و‌خطا دستی که تاکنون کاربرد مدل‌‌های مذکور را محدود ساخته است، تعیین می‌شود. رویکرد پیشنهادی در استخراج و بیان ریاضی مجموعه‌ای از رکوردهای نزدیک گسل در پایگاه داده پروژه نسل جدید روابط کاهندگی و رکوردهای نزدیک گسل ایران طی زلزله‌های طبس و بم مورد استفاده قرار گرفته است. نتایج حاکی از آن است که رویکرد نوین پیشنهادی پروسه اتوماتیک و کمی با حداقل قضاوت تحلیل‌گر را به‌منظور شبیه‌سازی طیف وسیعی از رکوردهای نزدیک گسل در اختیار قرار می‌دهد.

Using the Particle Swarm Optimization Algorithm for Identifying and Extracting the Prevalent Pulse of Near-Fault Ground Motions

Seyed Rohollah Hoseini Vaez, Zahra Minaei

With increasing the earthquake records over the past decades, it has been determined that ground motions in the vicinity of the causative fault (up to 15 km from the fault) can be significantly different from the motions away from the fault. These movements often include high displacement and velocity pulses with a significant structural damage potential and impose considerable seismic demand on the structure. Due to the devastating effects of such earthquakes, many engineers and seismologists have focused on the quantitative identification of pulse bearing records and simulation of the near-fault ground motions. Many simulation models extract the prevalent velocity pulse of the near-fault motions through fitting the displacement, velocity, acceleration time histories, and the corresponding elastic-response spectra obtained from the model and the actual record. So far, determination of the analytical models parameters has been accompanied by a manual trial and error process. Such trial-and-error-based process limits the ability of engineers to apply these relationships and investigate their effects on research and practical applications. In this study, a new approach is proposed for identifying and extracting the prevalent velocity pulse from earthquake records by optimization algorithms and the mentioned models. Particle Swarm Optimization (PSO) algorithm is used to simultaneously minimize the difference between the time history and the corresponding elastic-response spectra of the simulation model and those of actual, by defining a suitable objective function.
The objective function in the optimization process is as a constrained function where the root-mean-square difference between the values of the pseudo-velocity elastic-response spectrum obtained from the pulse simulation model and its actual record is as the target function, and the root-mean-square difference between time histories of the corresponding velocity is as the constraint. With the objective function defined, the physical parameters of the simulation models are determined without the need for manual trial and error process. The optimization algorithm converts the manual trial and error in process of pulse extraction into the systematic trial and errors with the minimum analytic intervention and judgment. Then, by the proposed method and Hosseini Vaez mathematical model, a set of near-fault records have been simulated and stated in mathematical expression. The mentioned model includes harmonic and polynomial expressions, which is capable to simulate various pulses with a simpler form. Although this model simulates the long-period portion of near fault records, the parameters of model are determined based on a try and error method. The proposed method has been used to extract and simulate the prevalent pulses of near-fault records of Iran for the Tabas and Bam earthquakes.
Comparing the results with other studies represents the efficiency of the proposed method for extracting the prevalent velocity pulse from near-fault records and expressing them as closed mathematical equations. The generated pulse history can be used to structural analysis and investigation of structures response to near-fault ground motions. Besides, since the synthetic near-fault ground motions are a combination of long-period-dependent velocity pulse and high-frequency independent seismic wave, the proposed approach can be used to generate time history of the long-period dependent velocity pulse.

Keywords: Near-Fault Ground Motions, Simulation Models, Velocity Pulse, Optimization Algorithms, Particle Swarm Optimization.


موضوع


حرکات نزدیک گسل، پالس غالب رکورد سرعت، مدل‌های شبیه‌سازی، الگوریتم بهینه‌سازی ازدحام ذرات، تابع جریمه.

تمام متن:

PDF

مراجع


Bertero, V.V., Mahin, S.A., and Herrera, R.A. (1978) A seismic design implications of near-fault San Fernando earthquake records. Earthquake Engineering and Structural Dynamics, 6(1), 31–42.

Anderson, J.C. and Bertero, V.V. (1987) Uncertainties in establishing design earthquakes. Journal of Structural Engineering, 113(8), 1709–1724.

Hall, J.F., Heaton, T.H., Halling, M.W, and Wald, D.J. (1995) Nearsource ground motion and its effects on flexible buildings. Earthquake Spectra, 11(4), 569–605.

Iwan, W.D. (1997) Drift spectrum: measure of demand for earthquake ground motions. Journal of Structural Engineering, 123(4), 397–404.

Alavi, B. and Krawinkler, H. (2001) Effects of near-fault ground motions on frame structures. John A. Blume Earthquake Engineering Center.

Menun, C. and Fu, Q. (2002) An analytical model for near-fault ground motions and the response of SDOF systems. Proceedings of 7th U.S. National Conference on Earthquake Engineering, 21-25.

Makris, N. and Black, C.J. (2003) Dimensional analysis of inelastic structures subjected to near fault ground motions. Earthquake Engineering Research Center, University of California.

Mavroeidis, G.P., Dong, G. and Papageorgiou, A.S. (2004) Near-fault ground motions, and the response of elastic and inelastic single degree-of-freedom (SDOF) systems. Earthquake Engineering and Structural Dynamics, 33(9), 1023–1049.

Akkar, S., Yazgan, U., and Gulkan, P. (2005) Drift estimates in frame buildings subjected to near-fault ground motions. Journal of Structural Engineering, 131(7), 1014–1024.

Luco, N. and Cornell, C.A. (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra, 23(2), 357–392.

Somerville, P.G., Smith, N.F., Graves, R.W., and Abrahamson, N.A. (1997) Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters, 68(1), 199–222.

Mavroeidis, G.P. and Papageorgiou, A.S. (2003) A mathematical representation of near-fault ground

motions. Bulletin of the Seismological Society of America, 93(3), 1099–1131

Baker, J. (2007) Quantitative classification of nearfault ground motions using wavelet analysis. Bulletin of the Seismological Society of America, 97(5), 1486–1501.

Hoseini Vaez, S.R., Sharbatdar, M.K., Ghodrati Amiri, G., Naderpour, H., and Kheyroddin, A. (2013) Dominant pulse simulation of near fault ground motions. Earthquake Engineering and Engineering Vibration, 12(2), 267-278.

Shi, Y., and Eberhart, R.C. (1998) Parameter selection in particle swarm optimization. International conference on evolutionary programming, 591-600.

Eberhart, R.C. and Kennedy, J. (1995) A new optimizer using particles swarm theory. Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1, 39–43.

Jie, J., Zeng, J., Han, C., and Wang, Q. (2008) Knowledge-based cooperative particle swarm optimization. Applied Mathematics and Computation, 205(2), 861–873.

Kennedy, J. and Eberhart, R.C. (1995) Particle swarm optimization. Proceedings of 1995 IEEE International Conference on Neural Networks, 1942-1948.

Eberbart, R.C., Dobbins, R., and Simpson, P. (1996) Computational intelligence PC tools. Academic Press Professional, Inc.

Kennedy, J. (1997) The particle swarm: Social adaptation of knowledge. IEEE International Conference on Evolutionary Computation, 303-308.

Shi, Y. and. Eberhart, R. (1998) A modified particle swarm optimizer. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, 69-73.

Mcfadden, P.D., Cook, J.G., and Forster, L.M. (1999) Decomposition of gear vibration signals by the generalised S transform. Mechanical Systems and Signal Processing, 13(5), 691–707.

Todorovska, M.I., Meidani, H., and Trifunac, M.D. (2009) Wavelet approximation of earthquake strong ground motion-goodness of fit for a database in terms of predicting nonlinear structural response. Soil Dynamics and Earthquake Engineering, 29(4), 742–751.

Trifunac, M.D. (2008) Energy of strong motion at earthquake source. Soil Dynamics and Earthquake Engineering, 28(1), 1–6.


ارجاعات

  • در حال حاضر ارجاعی نیست.


تماس با ما حامیان مجله تمامی حقوق این سایت متعلق به فصلنامه علوم و مهندسی زلزله است