ارزیابی جامع شاخص‌های خسارت قاب‌های خمشی بتن‌آرمه در روش‌های طراحی‌ لرزه‌ای متداول و نوین

زهره جباری سلمی, اسماعیل ایزدی زمان آبادی

چکیده


عدم رضایت در کنترل ایمنی و پایایی سازه­های طراحی شده به روش­های متداول، دلیل گرایش محققین به روش­های طراحی بر اساس عملکرد است. طراحی مستقیم مبتنی بر تغییر مکان یکی از محبوب­ترین این روش­هاست. تحقیقات گذشته در بررسی شاخص­های کلی سازه­ها تا حد زیادی کارایی این روش را تأیید می­کنند. لیکن بررسی جامع­تر آن مستلزم برآورد خسارت المان­ها و وارد شدن به حیطه ارزیابی­های احتمالاتی می­باشد. هدف از این مطالعه بررسی روش طراحی مستقیم از چهار دیدگاه مختلف شامل تغییر مکان جانبی نسبی، خسارت­های موضعی، ارزیابی احتمالاتی و هزینه ساخت می­باشد. به‌منظور بررسی پاسخ تغییر مکانی و خسارت­های موضعی سازه­ها از چهار قاب خمشی بتن­آرمه با ارتفاع 3، 5، 7 و 11 طبقه استفاده شده است. نتایج نشان­دهنده‌‎ی تأمین سطح عملکرد انتخابی در خصوص پاسخ­های تغییر مکانی و عدم تجاوز دوران مفاصل پلاستیک از سطح ایمنی جانی در روش طراحی مستقیم برخلاف روش نیرویی می­باشند. نتایج ارزیابی احتمالاتی در پنج حالت خرابی در دو دسته از قاب­ها نشان‌دهنده‌ی احتمال خرابی کمتر در روش طراحی مستقیم برخلاف روش نیرویی می­باشد. ضمن اینکه تحلیل هزینه نشان­دهنده‌ی افزایش آرماتور مصرفی بین 6/6 تا 11/52 درصد و افزایش بتن مصرفی تا 4/3 درصد در روش طراحی مستقیم نسبت به روش نیرویی می­باشد.


موضوع


طراحی نیرویی، طراحی مستقیم مبتنی بر تغییر مکان، شاخص خسارت لرزه‌ای، خسارت‌های موضعی

تمام متن:

PDF

مراجع


]1] Priestley, M.N., Calvi, G.M. and Kowalsky, M.J. (2007) Displacement-Based Seismic Design of Structures. IUSS press, Pavia, Italy.

]2] Sullivan, T. (2002) The Current Limitations of Displacement Based Design. A dissertation submitted in partial fulfillment of the requirement for the master degree in earthquake engineering, Rose school.

]3] Shibata, A. and Sozen, M.A. (1976) Substitute-structure method for seismic design in R/C. Journal of the Structural Division. 102(ASCE# 11824).

]4] Chopra, and Goel, R.K. (1999) Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems. Civil and Environmental Engineering, 531.

]5] Judi, H.J., Fenwick, R.C. and Davidson, B.J. (2001) Direct displacement based design-a definition of damping. Proceeding of NZSEE Conference.

]6] Pettinga, J.D. and Priestley, M.J.N. (2005) Dynamic Behavior of Reinforced Concrete Frames Designed with Direct Displacement-Based Design. Research report No. rose-2005/02, Rose school.

]7] Beyer, K. (2005) Design and Analysis of Walls Coupled by Floor Diaphragms. A dissertation submitted in partial fulfillment of the requirement for the master degree in earthquake engineering, Rose school.

]8] Sullivan, T., Priestley, M.J.N. and Calvi, G. (2006) Direct displacement-based design of frame-wall structures. Journal of Earthquake Engineering, 10, 91-124.

]9] Massena, B., Degee, H. and Bento, R. (2010) Consequences of design choices in direct displacement based design of RC frames. Proceeding of 14th European Conference on Earthquake Engineering and Seismology (14ECEE), Ohrid, Macedonia.

]10] Nievas, C.I., and Sullivan, T.J. (2014) Developing the direct displacement-based design method for RC strong frame-weak wall structures. Second European Conference on Earthquake Engineering and Seismology, Istanbul.

]11] Ravinder, M. and Singh, A. (2016) Performance study on a pier designed using force based and direct displacement methods. International Journal of Engineering Science, 2024.

]12] Calvi, G.M. and Sullivan, T. (2009) Development of a model code for direct displacement based seismic design. The state of earthquake engineering research in Italy. The RELUIS-DPC 2005-2008 project.

]13] Calvi, G.M. and Sullivan, T.J. (2009) A model code for the displacement-based seismic design of structures. DBD09 draft subject to public enquiry. IUSS press, Pavia.

]14] Sullivan, T., Priestley, M.J.N. and Calvi, G. (2012) A model code for the displacement-based seismic design of structures. DBD12 draft subject to public enquiry. IUSS press, Pavia.

]15] Priestley, M.J.N. and Kowalsky, M.J. (2000) Direct displacement-based seismic design of concrete buildings. Bulletin of the New Zealand National Society for Earthquake Engineering, NZSEE, 33(4), 421-444.

]16] Izadi, Z.E. and Moghadam, A. (2015) Two important issues relevant to torsional response of asymmetric 8-story RC building designed with direct displacement based design approach. International Journal of Engineering-Transactions, 28(9), 1257-1267.

]17] Montejo, L.A. and Kowalsky M.J. (2007) Cumbia-set of Codes for the Analysis of Reinforced Concrete Members. Report No is-07-01, Constructed facilities laboratory, North carolina state university, Raleigh.

]18] Bracci, J.M., Reinhorn, A.M., and Mander, J.B. (1995) Seismic resistance of reinforced concrete frame structures designed for gravity loads performance of structural system. ACI Structural Journal, 92(5), 597-610.

Koyluoglu, H.U. Nielsen, S.R.K., Çakmak, A.Ş., Kirkegaard, P.H. (1997) Prediction of global and localized damage and future reliability for RC structures subject to earthquake. Earthquake Engineering and Structural Dynamics, 26(4), 463-475.

Mikami, T. and Lemura, H. (2000) Demand spectra of yield strength and ductility factor to satisfy the required seismic performance objectives. Proceeding of JSCE, No.689, 333-342.

Estekanchi, H.E., Arjomandi, K. and Vafai, A. (2007) Estimating structural damage of steel moment frames by endurance time method. Journal of Constructional Steel Research, 64(2), 145-155.

Park, Y.J., Reinhorn, A.M. and Kunnath, S.K. (1987) IDARC: Inelastic damage analysis of reinforced concrete frame-shear-wall structures.

]23] Bahar, O. and Taherpour, A. (2008) Nonlinear dynamic behavior of RC buildings against accelerograms with partial compatible spectrum. 14th World Conference on Earthquake Engineering and Seismology (14WCEE), Beijing, China.

]24] Pekelnicky, R., and Poland, C. (2017) ASCE 41-17: Seismic evaluation and retrofit of existing buildings. In SESOC 2017 convention.

Barron-Corvera, R. (2001) Spectral Evaluation of Seismic Fragility of Structures.

Nielson, B.G. (2005) Analytical fragility curves for highway bridges in moderate seismic zones. Diss. Georgia Institute of Technology.

Cornell, C.A. (2002) Normalization and sealing accelograms for nonlnear structural analysis. Proceedings of the 6th U.S. National Conference in Earthquake Engineering, Paper No. 243.

Vamvatsikos, D. and Cornell, C.A. (2002) Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31(3), 491–514.

Lilliefors, H.W. (1967) On the kolmogorov-smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399-402.

Anderson, T.W., Darling, D.A. (1954) A test of goodness of fit. Journal of the American Statistical Association, 49(268), 765-769.

Test, Chit-Square. Chi-Square Test. EEC 686: 785.


ارجاعات

  • در حال حاضر ارجاعی نیست.


تماس با ما حامیان مجله تمامی حقوق این سایت متعلق به فصلنامه علوم و مهندسی زلزله است