طراحی لایه‌های الیاف و تسمه‌های FRP جهت مقاوم‌سازی ستون‌های بتنی تحت نیروی محوری و گشتاور خمشی

سالار منیعی, احسان جامی

چکیده


امروزه تولیدات مختلفی از کامپوزیت‌های پلیمری در صنعت مقاوم‌سازی سازه‌های بتنی موجود است. از جمله این محصولات می‌توان به الیاف و تسمه‌های FRP که به روش نصب نزدیک سطح شناخته می‌شوند اشاره کرد. الیاف و تسمه‌های FRP برای تقویت اجزای مختلف سازه از جمله تیرها، ستون‌ها و اجزای صفحه‌ای مانند دال‌ها و دیوارهای برشی قابل کاربرد است. ازآنجایی‌که ستون‌ها در سازه‌های بتنی عموماً تحت اثرات توأم نیروی محوری و خمش دو محوره قرار می‌گیرند، ارزیابی و تقویت آنها تحت اثر تلاش‌های توأم مذکور در کارهای عملی مقاوم‌سازی از اهمیت بسیار بالایی برخوردار است. این مقاله به مطالعه‌ی مقاوم‌سازی اجزای ستون‌های بتن‌آرمه تحت اثرات ترکیبی نیروی محوری-گشتاور خمشی با استفاده از الیاف و تسمه‌های FRP می‌پردازد. برای این منظور، ضمن توسعه‌ی روابط موجود تقویت ستون‌های تحت اثر نیروی محوری و گشتاور خمشی تک‌محوره با الیاف FRP جهت محصورکنندگی ستون و تسمه‌های  FRPجهت تقویت خمشی، روشی محاسباتی برای تقویت ستون‌های بتنی مستطیلی تحت اثرات توأم نیروی محوری و خمش دو محوره پیشنهاد می‌شود. در ادامه، با استفاده از یک مطالعه‌ی موردی، روش پیشنهادی این مقاله تشریح می‌شود. نتایج نشان می‌دهد که روش پیشنهادی برای کارهای عملی مقاوم‌سازی مناسب بوده و همچنین ترکیب الیاف و تسمه برای تقویت ستون‌های با هر دو رفتار فشار-کنترل و کشش-کنترل مؤثر است. به‌علاوه، روش تحلیلی پیشنهادی با نتایج آزمایشگاهی موجود در ادبیات فنی وارسی و صحت‌سنجی خواهد شد.

Design of Interaction Curves for RC Columns with FRP Materials under the Effect of Axial Force and Biaxial Bending Moment

Salar Manie, Ehsan Jami

Fiber Reinforced Polymer (FRP) composites are widely used in retrofitting and strengthening of Reinforced Concrete (RC) structures. FRP composites are applicable for strengthening various structural elements including beams, columns and plane elements such as floor slabs and shear walls. Despite their broad usage, available guidelines typically do not contain a comprehensive procedure for retrofitting design of RC elements under general loading conditions. As RC columns are essentially subjected to simultaneous axial force and bending moment in monolithic construction, their evaluation and retrofit under such combined effects are of major importance in the retrofit design process. It appears that available expressions in most design guidelines merely accounts for the possible increase in the compressive strength of concrete due to the enhanced confinement on the concrete core provided by the FRP jackets. Theoretical and experimental studies on the behavior of columns confined by FRP composites subjected to axial force and bending moment are available in the literature. Those studies have demonstrated that FRP jacketing enhances the elements behavior in term of both strength and ductility. Most of studies are primarily devoted to the strengthening of RC elements under pure axial force. In recent years, however, studies have been conducted on response of RC elements under combined effects of axial load and uniaxial bending. Rocca (2009), among others, conducted a very precise and valuable practical study on the effects of bending moments on retrofitting of RC columns using FRP composite. He introduced the interaction curves of retrofitted RC columns with FRP jackets based on the principles of equilibrium and strain compatibility. Moreover, results of various experimental tests are found in the literature emphasizing the behavior of RC elements under eccentric loading conditions. Such tests have investigated the effects of various parameters including the strength of FRP composites, number of FRP layers, orientation of FRP layers, etc. on both strength and ductility of the retrofitted members.
The present paper deals with the retrofitting and strengthening of RC columns under combined effects of axial force and biaxial bending moment using FRP composites. The study is essentially the extension of the work conducted by Rocca (2009) to the more general biaxial case. Longitudinal, transverse and combined fiber-sheets are considered as alternatives of retrofitting RC columns using FRP composites. The proposed design procedure is then explained via a case study by which advantages and disadvantages of longitudinal, transverse and combined fiber composite sheets are investigated and discussed according to the interaction curve of the retrofitted column. Results demonstrate that the proposed procedure is appropriate for practical retrofitting applications, and different fiber-sheet layouts are effective in enhancing the load bearing capacity of both the compression- and tension-controlled columns.

Keywords: RC Columns Strengthening, Biaxial Bending, FRP, Retrofitting, Concrete Columns, Interaction Curve.


موضوع


تقویت ستون بتنی، خمش دو محوره، مصالح FRP، مقاوم‌سازی، منحنی اندرکنش نیروی محوری و لنگر خمشی

تمام متن:

PDF

مراجع


Saadatmanesh, H., Ehsani, M.R., Li, M.W. (1994) Strength and ductility of concrete columns externally reinforced with fiber composite straps. ACI Structural Journal, 91(4), 434–47.

Rahai, A. and Akbarpour H. (2014) Experimental investigation on rectangular RC columns

strengthened with CFRP composites under axial load and biaxial bending. Composite Structures, 108, 538-546.

Pham, T.M., Youssed, J., Hadi, M.N.S., Tran, T.M. (2016) Effect of Different FRP Wrapping Arrangements on the Confinement Mechanism. Proecedia Engineering, 142, 307-313.

Ranolia, K.V., Thakkar, B.K., Rathod, J.D. (2013) Effect of Different Patterns and Cracking in FRP Wrapping on Compressive Strength of Confined Concrete. Procedia Engineering, 51, 169-175.

Rocca, S., Galati, N., Nanni, A. (2009) Interaction diagram methodology for design of FRP-confined reinforced concrete columns. Construction and Building Materials, 23, 1508-1520.

Teng, J.G, Jiang, T. (2012) Theoretical model for slender FRP-confined circular RC columns. Construction and Building Materials, 32, 66-76.

Bournas, D.A. and Triantafillou, T.C. (2008) Flexural strengthening of RC columns with near surface mounted FRP or stainless steel reinforcement. Experimental investigation. The 14th World Conference on Earthquake Engineering, October 12-17, Beijing, China.

Hong, H., Zhong-X.L, Yanchao, S. (2015) Reliability Analysis of RC Columns and Frame with FRP Strengthening Subjected to Explosive Loads. Journal of Performance of Constructed Facilities, 30(2), 04015017.

Department of Planning and Strategic Supervision (2006) Criteria Guide the Design and Implementation of Concrete Improvements to Existing Buildings Using Reinforced Materials FRP. Issue 345 (in Persian).

MacGregor, J. (2012) Reinforced Concrete Mechanics and Design. 6th ed. Upper Saddle River, NJ, USA, Pierson Inc, 1157.

Bank, LC. (2006) Composites for Construction: Structural Design with FRP Materials. Hoboken, N.J. NJ, USA: John Wiley and Sons.

Lam, L. and Teng, J. (2003) Design-oriented stress-strain model for FRP-confined concrete. Construction and Building Materials. 17(6-7), 471-489.

Lam, L. and Teng, J. (2003) Design-oriented stress-strain model for FRP-confined concrete in rectangular columns. J. Reinf. Plast. Composites. 22(13), 1149-1186.

Rocca, S. (2007) Experimental and Analytical Evaluation of FRP-Confined Large Size Reinforced Concrete Columns. Ph.D. Dissertation. Rolla, MO, USA: University of Missouri-Rolla, 171.

Carey, S. and Harries, K. (2003) The Effects of Shape, ‘Gap’, and Scale on the Behavior and Modeling of Variably Confined Concrete. Report No. ST03-05. Columbia, SC, USA: University of South Carolina.

American Concrete Institute (2008) Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening of Concrete Structures. ACI 440.2R. Farmington Hills, MI, USA: American Concrete Institute, 80.

American Concrete Institute (2008) Building Code Requirements for Structural Concrete. ACI 318-08. Farmington Hills, MI, USA: American Concrete Institute, 443.

Ray, S.S. (1995) Reinforced Concrete Analysis and Design. Blackwell Science.


ارجاعات

  • در حال حاضر ارجاعی نیست.


تماس با ما حامیان مجله تمامی حقوق این سایت متعلق به فصلنامه علوم و مهندسی زلزله است